Website is intended for physicians
Search:
Всего найдено: 10

 

Abstract

Introduction: article presents the first experience and long-term results of using domestic coronary balloon-expandable stents with a bioinert carbon coating, «Nanomed».

Aim: was to evaluate long-term results of using domestic coronary balloon-expandable stents with bioinert linear chain carbon coating (BLCCC), «Nanomed».

Materials and methods: the study included 387 patients, suffering from coronary heart disease, who underwent endovascular myocardial revascularization from 2016 to 2018, with implantation of coronary balloon-expandable stents with BLCCC by the Nanomed company, Penza. The control group included 320 patients who underwent endovascular myocardial revascularization with implantation of coronary balloon-expandable cobalt-chromium stents «MSure Cr» of the company «Multimedics», during the same period. A comparative estimation of long-term results was carried out on the basis of a study of the overall frequency of repeated myocardial revascularization; repeated interventions on the target vessel; the frequency of interventions on other coronary arteries with the progression of atherosclerosis; long-term survival rates.

Results: in the long-term period, the overall probability of absence of repeated revascularization in 47 months after PCI was 78,3 ± 2.1% and 72,1 ± 2.4% in the «Nanomed» BLCCC and «MSure Cr» groups, respectively. There was no statistically significant difference between groups (Log. Rank=0,77). However, the incidence of restenosis in the stent was statistically significantly higher in the «MSureCr» group. (p = 0,027). The overall probability of survival in 47 months after surgery was 98,2±2,4% and 98,1±2.6% in groups 1 and 2, respectively. No statistically significant difference between groups was found (Log. Rank=0,4).

Conclusions: 1. The use of a coronary balloon-expandable stent with a BLCCC, Nanomed for endovascular myocardial revascularization is an effective treatment in patients with coronary heart disease.

2. Long-term results of using bioinert carbon-coated stents, Nanomed and MSureCr stents were comparable in terms of absence of myocardial re-revascularization procedures due to relapse of the angina pectoris and survival time of up to 47 months. However, the incidence of restenosis in a stent with a bioinert carbon coating, Nanomed was statistically significantly lower.

 

References

1.     Allender S, Scarborough P, O’Flaherty M, Capewell S. Patterns of coronary heart disease mortality over the 20th century in England and Wales: Possible plateaus in the rate of decline. BMC Public Health 2008, 8, 148.

2.     De Scheerder I, Wang K, Wilczek K et al. Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents. Circulation. 1997; 95: 1549-1553.

3.     Morice M, Urban P, Greene S, Schuler G, Chevalier B. Why are we still using Coronary Bare-Metal Stents? JACC 2013;61;1122-3.

4.     De Mel A, Cousins BG, Seifalian AM. Surface modification of biomaterials: A quest for blood compatibility. Int. J. Biomater. 2012;  707863:1-707863:8.

5.     Kochkina K, Protopopov A. Comparative results of the use of stents with drug and carbon coatings in treatment of patients with all forms of acute coronary syndrome in the long-term follow-up. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2014; 1:52-58 [In Russ].

6.     Carrie D, Lefevre T, Cherradi R, et al. Does Carbofilm coating affect in-stent intimal proliferation? A randomized trial comparing Rx multi-link penta and TecnicCarbostent Stents: SIROCCO Trial. J Interv Cardiol. 2007; 20(5):3818.

7.     De Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules. 2008; 9: 2969-2979.

8.     Hofma SH, Whelan DM, van Beusekom HM, Verdouw PD, van der Giessen WJ. Increasing arterial wall injury after long-term implantation of two types of stent in a porcine coronary model. Eur. Heart J. 1998; 19: 601-609.

9.     Wu KK, Thiagarajan, P. Role of endothelium in thrombosis and hemostasis. Annu. Rev. Med. 1996, 47, 315-331.

10.   Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 2006; 193-202.

11.   Farb A, et al., Pathology of acute and chronic coronary stenting in humans. Circulation. 1999; 99(1): 44-52.

12.   Sarno G, et al., Lower risk of stent thrombosis and restenosis with unrestricted use of 'newgeneration' drug-eluting stents: a report from the nation wide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur Heart J. 2012;  33(5): 606-13.

13.   Palmerini T, et al., Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet. 2012;  379(9824): 1393-402.

14.   Antoniucci D, Bartorelli A, Vaenti R, et al. Clinical and angiographic outcome after coronary artery stenting with the Carbostent. Am J Cardiol. 2000; 85: 821-825.

15.   Antoniucci D, Valenti R, Migliorini A, et al. Clinical and angiographic outcomes following elective implantation of the Carbostent in patients at high risk of restenosis and target vessel failure. CathetCardiovasc Interv. 2001; 54: 420-426.

16.   Gian B Danzi, Cinzia Capuano, Marco Sesana et al. Six-Month Clinical and Angiographic Outcomes of the Technic Carbostent(TM) Coronary System: The Phantom IV Study. J Invasive Cardiol. 2004; 16(11): 641-4.

17.   Wiemer M, Butz T, Schmidt W, Schmitz KP, Horstkotte D, Langer C. Scanning electron microscopic analysis of different drug eluting stents after failed implantation: From nearly undamaged to major damaged polymers. Catheter. Cardiovasc. Interv. Off. J. Soc. Cardiac. Angiogr. Interv. 2010; 75: 905-911.

18.   Pendyala L, Jabara R, Robinson K, Chronos N. Passive and active polymer coatings for intracoronary stents: Novel devices to promote arterial healing. J. Interv. Cardiol. 2009; 22: 37-48.

19.   Kesavan S, Strange J, Johnson T et al. First-in-man evaluation of the MOMO cobalt-chromium carbon-coated stent. EuroIntervention 2013; 8:1012-1018.

20.   Jung JH, Min PK, Kin JY, Park S, Choi EY, Ko YG, Choi D, Jang Y, Shim WH and Cho SY: Does a carbon ion-implanted surface reduce the restenosis rate of coronary stents? Cardiology. 2005; 104 (2): 72-75,

21.   Kim Y, Whan Lee C, Hong M et al. Randomized comparison of carbon ion-implanted stent versus bare metal stent in coronary artery disease: The Asian Pacific Multicenter Arthos Stent Study (PASS) trial. American Heart Journal. 2005; 149 (2).

22.   George Cesar Ximenes Meireles, Luciano Mauricio de Abreu, Antonio Artur da Cruz Forte et al . Randomized comparative study of diamond-like carbon coated stainless steel stent versus uncoated stent implantation in patients with coronary artery disease. Cardiol. Sro Paulo Apr. 2007; 88 (4).

23.   Ben-Dor I, Waksman R, Pichard A.et al. The Current Role of Bare-Metal Stents. Cardiac interv. 2011; 1:40-45.

24.   Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Jukema JW, Huisman MV. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and metaanalysis. Am Heart J. 2007; 154:221-31.

25.   Bartorelli A, Trabattoni D, Montorsi P Aspirin alone antiplatelet regimen after intracoronary placement of the Carbostent: the ANTARES study. Catheter Cardiovasc Interv. 2002 Feb; 55(2):150-6.

26.   Goods C, Al-Shaibi, Liu M et al. Comparison of aspirin alone versus aspirin plus ticlopidin after coronary artery stenting. Am J Cardiol. 1996; 78:1042-1044.

27.   Leon M, Baim D,Popma J et al. A clinical trial comparing three anthitrombotic drug regimens after coronary artery stentings. Stent Anticoagulation Restenosis Study Investigators. N Engl J Med. 1998; 339:1665-1671.

28.   Braun P et al. Prospective randomized study of the restenotic process in small coronary arteries using a Carbofilm coated stent in comparison with plain old balloon angioplasty: a multicenter study. Catheter Cardiovasc Interv. 2007 Dec 1; 70(7):920-7.

29.   Taema K, Moharram A. Long Term Clinical Follow-up of Carbon Coated Stents: Comparative Study with Bare-Metal Stents Med. J. Cairo Univ. 1-8, March: 18, 2014; 82 (2). 

 

Abstract:

Lesions of the LCA stem are found in 2,5-4 % of patients with coronary heart disease who endured coronography, and are accompanied by more severe symptomatology, higher morbidity and mortality rates, and difficulty of radical correction. According to the generally accepted guidelines, the operation of coronary artery bypass has up to now been a method of choice in treatment of the LCA stem. Nevertheless, endovascular methods of treatment for LCA stem lesions have relatively long been used, while implementation into clinical practice of drug-eluding stents has considerably improved the remote outcomes, which made it possible to consider LCA stem stenting as a real alternative to ACB. Hence, the problem concerning indications for and contraindications to LCA stem stenting remains unsolved today. We retrospectively analysed a total of 75 endovascular interventions on the LCA stem in 67 patients, with an isolated lesion of the LCA stem being found only in 7,4 % of the patients. The remaining subjects had lesions of the LCA stem on the background of a multivascular lesion of the coronary bed, including occlusion of the RCA observed in 16,4 % of cases. Successive revascularization was performed in 98,64 % of cases, with no lethal outcomes. One patient required urgent ACB due to development of occluding dissection of the circumflex branch. Complications in the immediate postoperative period were observed in two patients and were represented by non-Q myocardial infarction and stroke. LCA stem stenting proved an efficient and safe method of treatment for coronary heart disease. A comparative analysis of the immediate results of LCA stem stenting and ACB revealed advantages of stenting, consisting in no lethal outcomes (in our series) and a lower short-term rate of postoperative complications.

  

Reference

1.     Cohen МУ Cohn PF, Herman MV, Gorlin R. Diagnosis and prognosis of main left coronary artery obstructtion. Circulation 1972; 45 (Suppl 1): 57 - 65.

2.     Gruentzig A.R. Transluminal dilatation of coronary artery stenosis. Lancet 1978; 1: 263.

3.     O'Keefe JH, Harztler GO, Rutherford BD, et al. Left main coronary angioplasty: early and late results of 127 acute and elective procedures. Am. J. Cardiol. 1989; 64: 144 - 147.

4.     Seung-Jung Park, MD, PHD, Young-Hak Kim, MD, Bong-Ki Lee, MD et al. Sirolimus-Eluting Stent Implantation for Unprotected Left Main Coronary Artery Stenosis Comparison With Bare Metal Stent Implantation. Journal of the American College of Cardiology. 2005; 3 (45): 351-6.

5.     Seung-Jung Park, Young-Hak Kim, Bong-Ki Lee, Seung-Whan Lee, Cheol Whan Lee, Myeong-Ki Hong, Jae-Joong Kim, Gary S. Mintz, MD, Seong-Wook Park. Sirolimus-Eluting Stent Implantation for Unprotected Left Main Coronary Artery Stenosis. J. Am. Coll. Cardiol. 2005; 45: 351-6.

6.     Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004; 109: 1244-9.

7.     Arampatzis CA, Hoye A, Saia F, et al. Elective sirolimus-eluting stent implantation for left main coronary artery disease: six-month angiographic follow-up and 1-year clinical outcome. Cathet. Cardiovasc. Interv. 2004; 62: 292 - 6.

8.     Joseph P. Ornato, Richard L. Page, Barbara Riegel etal. A Report of the American College of ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary. Circulation. 2006; 113: 156 - 175.

9.     Caracciolo EA, Davis KB, Sopko G, Kaiser GC et al. Comparison of surgical and medical group survival in patients with left main equivalent coronary artery disease: Long-term CASS experience. Circulation. 1995; 91: 2335-44.

10.   Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet. 1994; 344: 563 - 570.

11.   Park S, Hong M, Lee CW, et al. Elective stenting of unprotected left main coronary artery stenosis: effect of debulking before stenting and intravascular ultrasound guidance. J. Am. Coll. Cardiol. 2001; 38: 1054 - 1060.

12.   TakagiT, Stankovic G, Finci L, Toutouzas K, Chieffo A, Spanos У Liis-tro F, Briguori C, Corvaja N, Albero R, Sivieri G, Paloschi R, Di Mario C, Colombo A. Results and long-term predictors of adverse clinical events after elective percutaneous interventions on unprotected left main coronary artery. Circulation. 2002; 106: 698 - 702.

13.   Sorin J. Brener, MD; Bruce W Lytle, MD; Ivan P. Casserly, MD; Jakob P. Schneider, RN; Eric J. Topol, MD; Michael S. Lauer, MD. Propensity Analysis of Long-Term Survival After Surgical or Percutaneous Revascularization in Patients With Multivessel Coronary Artery Disease and High-Risk Features. Circulation. 2004; 109: 2290 -2295.

14.   Silvestri M, LefПvre T, Labrunie P, Khalife K, Bayet G, Morice MC, Bedossa M, Chmait A.. On behalf of the FLM registry investigators. The French registry of left main coronary artery treatment: Preliminary results. J. Am. Coll. Cardiol. 2003; 41: 45.

15.   Brigouri C, Sarais C, Pagnotta P, Airoldi F, et al. Elective versus provisional pumping in high-risk percutaneus transluminal coronary angioplasty. Am. Heart J. 2003; 145 (4): 700 - 7.

16.   Бокерия Л. А., Алекян Б. Г., Бузиашвили Ю. И. и др

 

 

Abstract:

Endovascular methods of treatment for coronary heart disease are of considerable current use. Stenting of coronary arteries is the most widely used intervention in management of coronary heart disease. Present-day models of coronary stents make it possible to selectively perform direct stenting in certain roentgenomorphology of the lesion concerned. The authors analysed the outcomes of direct and conventional stenting of coronary arteries in 74 patients presenting with coronary heart disease. No differences as to the mortality rate were observed between the groups. The group of direct stenting demonstrated lower percentage of ischemic events: myocardial infarction on the background of acute or subacute thrombosis of the stent (1 - in the direct-stenting group, 3 - in the conventional-stenting group), transitory myocardial ischaemia (1 case in the direct-stenting group, 3 cases in the conventional-stenting group). Of the angiographic peculiarities, dissection complicated a total of three procedures of traditional stenting, and did not occur in the direct-stenting group. The no-reflow syndrome was noted to have developed in one case in the stenting group with predilatation. Of the technical peculiarities in the direct-stenting group, we observed a statistically reliable decrease in the average duration of the intervention by 11,76 minutes (P = 0,039), that of roentgenoscopy by 5,91 minutes (P = 0,027), a decrease in the average consumption of the radiopaque medium by 68,36 ml (P < 0,01), and a decrease in the average expenditure of coronary balloon catheters by 0,59 pc. (P < 0,001). Hence, the method of direct stenting of coronary arteries turned out to offer advantages over the conventional-stenting technique with predilatation in the clinical, angiographic and economic aspects, provided a careful selection of patients is performed.

  

Reference

1.     Фуфаев Е.Н. К вопросу о методике клинико-социальных исследований по изучению потребности в кардиохирургической помощи. Качественная Клиническая Практика. 2003; (31) 2: 13-108.

2.     Бокерия Л.А., Гудкова Р.М. Сердечно-сосудистая хирургия - 2004. Болезни и врожденные аномалии системы кровообращения. М., НЦССХ им. А.Н. Бакулева РАМН. 2005; 118.

3.     Rogers С, Parikh S., Seifert P. Edelman E. Endogenous cell seeding. Remnant endothelium after stenting enhances vascular repair. Circulation. 1996; (94).2909-2914.

4.     Villegas B., Morice M.C., Hernandez S. et al. Triple Vessel Stenting for Triple Vessel Coronary Disease. The Journal of Invasive Cardiology. 2002; (14): 1-5.

5.     Chauhan A., Vu E., Ricci D.R., et al. Early and intermediate term clinical outcome after multiple coronary stenting. Heart. 1998; (79): 29-33.

6.     Kastrati A., Hall D., SchЪmig A. Long-term outcome after coronary stenting. Curr. Control Trials Cardiovasc Med. 2000; (1): 48-54.

7.     La Manna A., Di Mario C. Therapeutic Strategies in Multiple Vessel Coronary Artery Disease. E-Journal of European Society of Cardiology. 2005; (29): 17-23.

8.     Triantis G.S., Tolis V.A., Michalis L.K. Direct Implantation of Intracoronary Stents. Hellenic J. Cardiol. 2002; (43): 156-160.

9.     Weaver W.D., Reisman M.A., Griffin J.J., et al., for the OPUS-1 Investigators. Optimum percutaneous transluminal coronary angioplasty compared with routine stent strategy trial (OPUS-1): a randomised trial. Lancet. 2000; (355): 203-219.

10.   Schuhlen H., Kastrati A., Dirschinger J. Intracoronary Stenting and Risk for Major Adverse Cardiac Events During the First Month. Circulation. 1998; (98): 104-111.

 

Abstract:

We performed the analysis of published data on the use of multislice computed tomography in diagnostics of coronary heart disease. The data on the development of the method, indicated that it its diagnostic efficiency is related to technological improvements, accompanied by the appearance of each successive generation of multislice computed tomography We described possibilities of using of scanners from 16 to 230-slice, devices with two sources of energy, advantages of «dual energy» regime application in the coronary disease diagnostics. Given constraints on the method diagnostic efficacy - artifacts associated with the movement and severe calcification. It is indicated that the implementation of the method in cardiology practice promotes its consideration as a promising alternative to invasive diagnostic coronary angiography, it is suggested becoming of further development of the technology that will allow multislice computed tomography to become the main method of diagnosis of coronary heart disease and other cardiovascular diseases.  

 

References 

1.    Paul J.F., Dambrin G., Caussin C. et al. Sixteen-slice computed tomography after acute myocardial infarction: from perfusion defect to the culprit lesion. Circulation. 2003; 108: 373-374.

2.    Sun Z., Choo G.H., Ng K.H. Coronary CT angiography: current status and continuing challenges. Br. J. Radiol. 2012; 85: 495-510.

3.    Costello P., Lobree S. Subsecond scanning makes CT even faster. Diag. Imaging. 1996; 18: 76-79.

4.    Taguchi K., Aradate H. Algorithm for image reconstruction in multi-slice helical CT. Med. Phys. 1998; 25: 550-561.

5.    Flohr T.G., Schaller S., Stierstorfer K. et al. Multidetector row CT systems and image-reconstruction techniques. Radiology. 2005; 235: 756-773.

6.    Haberl R., Tittus J., Bohme E. et al. Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography? Am. Heart J. 2005; 149: 1112-1119.

7.    Goldman L.W. Principles of CT: multislice CT. J. Nucl. Med. Technol. 2008; 36: 57-68.

8.    Lewis M., Keat N., Edyvean S. 16 Slice CT scanner comparison report version 14, 2006. Available from: URL: http://www.impactscan.org/reports/Report06012.htm

9.    Achenbach S., Ropers D., Pohle F.K. et al. Detection of coronary artery stenoses using multi-detector CT with 16x0.75 collimation and 375 ms rotation. Eur. Heart J. 2005; 26: 1978-1986.

10.  Kuettner A., Beck T., Drosch T. et al. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart. 2005; 91: 938-941.

11.  Garcia M.J., Lessick J., Hoffmann M.H. Accuracy of 16-row mul-tidetector computed tomography for the assessment of coronary artery stenosis. JAMA. 2006; 296: 403-411.

12.  Flohr T.G., McCollough C.H., Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 2006; 16: 256-268.

13.  Steigner M.L., Otero H.J., Cai T. et al. Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int. J. Cardiovasc. Imaging. 2009; 25: 85-90.

14.  Achenbach S., Marwan M., Schepis T. et al. High- pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 2009; 3: 117-121.

15.  Ruzsics B., Lee H., Zwerner P. et al. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur. J. Radiol. 2008; 18: 2414-2424.

16.  Jiang H.C., Vartuli J., Vess C. Gemstone-the ultimatum scintillator for computed tomography. Gemstone detector white paper. London: GEHealthcare. 2008: 1-8.

17.  Sun Z., Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur. J. Radiol. 2006; 60: 279-286.

18.  Pontone G., Andreini D., Bartorelli A. et al. Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J. Am. Coll. Cardiol. 2009; 54: 346-355.

19.  Sun Z., Ng K.H. Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging. 2012; 28: 2109-2119.

20.  Budoff M.J., Dowe D., Jollis J.G. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008; 52: 1724-1732.

21.  Miller J.M., Rochitte C.E., Dewey M. et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl. J. Med. 2008; 359: 2324-2336.

22.  Alkadhi H., Stolzmann P., Desbiolles L. et al. Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart. 2010; 96: 933-938.

23.  Hou Y, Yue Y, Guo W. et al. Prospectively versus retrospectively ECG-gated 256-slice coronary CT angiography: image quality a

Abstract:

Aim: was to investigate possibilities of multislice computed tomography in estimation of stenosis degree in coronary arteries in patients with ischemic heart disease (IHD).

Materials and methods: we examined 64 patients (18 female, 46 male, mean age 62,4± 9,5 years), who primary had been admitted to hospital and had high risk of IHD; and those who had early diagnosed IHD of 1,2,3 and 4 functional class, they were hospitalized for condition correction. Mainly spreaded risk factor was arterial hypertention in 55 patients - (85,9%) with highest level 200/100 mm hg and minimal 140/80 mm hg. All patients underwent multislice computed tomography (MSCT) on the 256-slice tomography station «Somatom definition flash (Siemens, Germany)»: collimation 128 x 0,6, the temporal resolution of 75 ms and a spatial resolution of 0.33 mm, slice thickness of 0.6 mm, with simultaneous use of two tubes with different voltage (kV 120/100), the current mAs - with programs to reduce radiation exposure Care Dose - is calculated automatically according to the constitution of man.

Post-processing of obtained data was performed on a workstation Syngo Via, in the application of CT-Soronary with automatic longitudinal separation of each coronary artery In view of image quality was analyzed data from end-diastolic phase of the cardiac cycle (80% R-R), or evaluated complex of multiphase images. We analyze the state of the main arteries of the main coronary: left anterior descending artery, the circumflex artery and the right coronary artery (LAD, CA, RCA). We performed estimation of coronary artery stenosis of segments according to the American Heart Association (AHA). Results were displayed in percentage. Obtained data was compared with those obtained using the reference method - X-ray coronary angiography, which was performed according to standard protocol

Results: comparison of results of coronary angiography and MSCT using correlation analysis showed the presence of strong direct significant correlation coefficients in the evaluation of coronary artery disease according to two methods. It was demonstrated a high inter-operator and intraoperator reproducibility of MSCT in the study of vessels conditions. Following characteristics of the method related to the identification of coronary artery stenosis segments: sensitivity - 95.8%, specificity - 92.8%, diagnostic accuracy - 95.1%, positive predictive value - 97.9%, negative predictive value - 86.6 %.

It was concluded that the high importance of the method of MSCT in the diagnosis of cardiovascular diseases and the need for its widespread use in cardiology practice.  

 

References 

1.    Chazov E.I. Perspektivyi kardiologii v svete progressa fundamentalnoy nauki. [Prospects of Cardiology in light of the progress of fundamental science.] Ter. Archive. 2009; 9 : 5-8 [In Russ.]

2.    Данилов Н.М., Матчин Ю.Г. и др. Показания к проведению коронарной артериографии. Consilium Medicum. Болезни сердца и сосудов. 2006; 1(1). Danilov N.M., Matchin Yu.G. et al. Pokazaniya k provedeniyu koronarnoy arteriografii. Consilium Medicum. Bolezni serdtsa i sosudov. [Indications for coronary arteriography. Consilium Medicum heart disease and vascular. ]2006; 1(1) [In Russ.].

3.    Sun Z., Choo G.H., Ng K.H. Coronary CT angiography: current status and continuing challenges. Br. J. Radiol. 2012; 85: 495-510.

4.    Sun Z., Aziz YF., Ng K.H. Coronary CT angiography: how should physicians use it wisely and when do physicians request it appropriately. Eur. J. Radiol. 2012; 81: 684-687.

5.    Haberl R., Tittus J., Bohme E. et al. Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography. Am. Heart J. 2005; 149: 1112-1119.

6.    Steigner M.L., Otero H.J., Cai T. et al. Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int. J. Cardiovasc. Imaging. 2009; 25: 85-90.

7.    Achenbach S., Marwan M., Schepis T. et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 2009; 3: 117-121.

8.    Budoff M.J., Dowe D., Jollis J.G. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008; 52: 1724-1732.

9.    Petcherski O., Gaspar T., Halon D. et al. Diagnostic accuracy of 256-row computed tomographic angiography for detection of obstructive coronary artery disease using invasive quantitative coronary angiography as reference standard. Am. J. Cardiol. 2013; 111: 510-515.

10.  De Graaf F.R., Schuijf J.D., Van Velzen J.E. et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur. Heart J. 2010; 31: 1908-1915.

 

 

Abstract:

We have analyzed long-term results of different revascularization strategies in 171 patients with multivessel coronary artery defeat. Duration of follow up observation ranged from 12 to 18 months. Complete revascularization of the myocardium was performed in 63 pts, culprit vessel revascularization - in 86 and incomplete revascularization - in 22 patients. All patients undervwent SYNTAX scoring analysis to find out possible risks of transcutaneus coronary interventions. Survival rate, incidence of myocardial infarction, repeat myocardial revascularization procedures and major adverse cardiac events were comparable among the patients with low and intermediate SYNTAX Score. Among the patients with high SYNTAX Score the incidence of myocardial infarction (8,82%, р = 0,002), repeat PCI procedure (32,35%, р = 0,001) and major adverse cardiac events (32,35%, р = 0,002) was reliably higher compared to patients with low and intermediate SYNTAX Score. The mpact of the SYNTAX Score rate on the long-term results in the different revascularization strategy groups was also analyzed. In the 1st group the incidence of major adverse cardiac events among the patients was comparable. In the 2nd group patients with the high SYNTAX Score rate had reliably higher rate of major adverse cardiac events (43,75%, р = 0,002). The rate of major adverse cardiac events were higher in the 3rd group of patients with the high SYNTAX Score rate compared in patients with low and intermediate SYNTAX Score rate, but this difference didn't reach statistically reliable difference. Use of the strategy of culprit vessel revascularization in the patients with high SYNTAX Score rate, leads to increased rate of major adverse cardiac events and repeat PCI procedures in the long-term follow up period.

 

References 

1.    Silber S. et al. Guidelines for percutaneous        coronary interventions. Eur. Heart. J.2005; 26: 804-847.

2.    Bourassa M.G. et al. Strategy of complete revascularization in patients with multivessel coronary artery disease (a report from the 1985-1986 NHLBI PTCA Registry).

3.    Am. J. Cardiol. 1992; 70: 174. Bourassa M.G. et al. Long-term outcome of 5 patients with incomplete vs complete revascularization after multivessel PTCA (a report from NHLBI PTCA Registry). Eur. Heart. J. 1998; 19: 103-111.

4.    Hannan E.L. et al. Impact of completeness of percutaneous coronary intervention revascularization on long-term outcomes in the stent era. Circulation. 2006; 113; 2406-2412.

5.    Hannan E.L. et al. Incomplete revascularization in the era of drug-eluting stents. Impact on adverse outcomes. J. Am. Coll. Cardiol. Intv. 2009; 2: 17-25.

6.    Ijsselmuiden A.J.J. et al. Complete versus culprit vessel percutaneous coronary intervention in multivessel disease. A randomized comparison. Am. Heart. J.2004; 148: 467-474.

7.    Martuscelli E. et al. Revascularization strategy in patients with multivessel disease and a major vessel chronically occluded. Data from the CABRI trial. Eur. J. of Card.Thorac. Surg. 2008; 33: 4-8.

8.    Van den Brand M.J.B.M. et al. The effect of completeness of revascularization on event-free survival at one year in the arts trial. J. Am. Col. Cardiol. 2002; 39; 559-564.

9.    Беленков Ю.Н., Акчурин Р.С., Савченко А.П. и др. Результаты коронарного стентирования и хирургического лечения у больных ИБС с многососудистым поражением коронарного русла. Кардиология. 2002; 5: 42-45.

10.  Ong A.T.L., Serruys P.W. Coronary artery bypass graft surgery versus percutaneous coronaryintervention. Circulation. 2006; 114: 249-255.

11.  Patil C.V. et al. Multivessel coronary artery disease. Current revascularization strategies. Eur. Heart. J. 2001; 22: 1183-1197.

12.  Buda A.J. et al. Long-term results following coronary bypass operation. Importance of preoperative factors and complete revascularization. J. Thorac. Cardiovasc. Surg. 1981; 82: 383-290.

13.  Rodriguez A.E. et al. Revascularization strategies of coronary multiple vessel disease in drug eluting stent era. One year follow-up results of ERACI III trial. Eurointervention. 2006; 2: 53-60.

14.  Rodriguez A.E. et al. Late loss of early benefit from drug-eluting stents when compared with bare-metal stents and coronary artery bypass surgery. 3 years follow-up of the ERACI III registry. Eur. Heart. J. 2007; 28: 2118-2125.

15.  Serruys P.W. et al. The clinical outcome of percutaneous treatment of bifurcation lesions in multivessel coronary artery disease with the sirolimus-eluting stent. Insights from the Arteкial Revascularization Therapies Study Fart II (ARTS II). Eur. Heart. J. 2007; 28 (4): 433-442.

16.  Serruys P.W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009; 360: 961-972.

17.  Serruys P.W. Sirolimus-eluting stents for the treatment of patients with multivessel de novocoronary artery lesions. EuroInterv. Arterial, Revascularis. Therap. Study PartII. 2005; 2: 147-156.

18.  Serruys P.W. et al. Assessment of the SYNTAX score in the Syntax study. EuroIntervention. 2009; 5 (1): 50-56.

 

Abstract:

Diseases of the circulatory system in a few decades are one of the major causes of death and disability in the population in many countries around the world. In Russian Federation, a number of newly diagnosed cases of coronary heart disease and mortality of the working population of this pathology is growing. In clinical practice at the present time, various radiological techniques assess the condition of the heart and coronary vessels, determine the location and volume of lesions. In the available literature, however, we found no data on methods of research that would reveal the correlation between the X-ray anatomy of coronary vessels and structural and functional state of the heart muscle. Thus, the need for comprehensive scientific research is obvious. Results of this study will, on the basis of survey data, using the methods of radiation diagnosis, objectively assess the level of metabolic and structural and functional state of the cardiomyocytes in cardiac patients. This will improve the accuracy and informativeness of diagnosis, as well as the increase of the control of effectiveness of therapy and quality of patients' life with cardiac diseases. 

 

References

1.     Pakkal M., Raj V., McCann G.P Non-invasive imaging in coronary artery disease including anatomical and functional evaluation of ischemia and viability assessment. The British Journal of Radiology. 2011; 84: S280-S295.

2.     Boqueria L.A., Gudkova R.G. Cardiac Surgery - 2010. Diseases and congenital malformations of the circulatory system. Moscow: Publishing Bakoulev center for cardiovascular surgery of RussianAcademy of Medical Sciences. 2011. 192 p [In Russ].

3.     Lindenbraten L.D. Beam diagnostics: achievements and challenges of modern times. Radiology - practice. 2007, 3: 4-15[In Russ].

4.     Sharafeev A.Z. Diagnosis of associated atherosclerotic lesions of different pools in CHD patients. Kazan Medical Journal. 2009; XC (2), 145-148[In Russ].

5.     Shahov B.E., Krinina I.V., Matusowa E.I., Vostriakova L.V. Classic radiologic differential diagnosis of angina syndrome. Medical almanac. 2007, 1: 58-61[In Russ].

6.     Ternovoy S.K., Akchurin R.S., Fedotenkov I.S. et all. Multislice computed tomography in the diagnosis of non-invasive cross-mammaro and aortocoronary bypass grafts. Kuban Research Medical Bulletin. 2010, 6: 147-153 [In Russ].

7.     Nudnov I.N., Bolotov P.A., Rudenko B.A. Comparative analysis of the morphology after implantation of coronary atherosclerosis and uncovered stents drug according to coronary angiography and intravascular ultrasound. Medical imaging. 2011, 5: 104-113 [In Russ].

8.     Lishmanov J.B., Markov V.A., Krivonogov N.G. Possibilities of radionuclide methods in forecasting the results of coronary artery bypass grafting in patients after myocardial infarction. Diagnostic and Interventional Radiology. 2008, 2 (4): 17-25 [In Russ].

9.     The methods of radiologic diagnosis: a manual. S.K. Ternovoy and others (Ed. Ed. Sapozhkova L.P.). Rostov n / D: Phoenix. 2007, 137 p. [In Russ].

10.   Sinicyn V.E., Fomina I.G., Pisarev M.V., Gagarina N.V. Diagnostic and prognostic significance of detection of coronary calcification in the preclinical stage of ischemic heart disease. Cardiovascular therapy and prevention. 2004, 3 (5): 118-125 [In Russ].

11.   Kothawade K., Noel Bairey Merz C. Microvascular coronary dysfunction in women - pathophysiology, diagnosis and management. Curr. Probl. Cardiol. 2011; 36 (8): 291-318.

12.   Gorge G., Ge J., von Birgelen C., Erbel R. Intracoronary ultrasound - the new gold-standart? Zeitschrift fur Kardiologie. 1998; 87 (8): 575-585.

13.   Movsesyants M.Y, Ivanov V.A., Trunin I.V. Intravascular ultrasound with Virtual Histology in lesions of the coronary arteries. Cardiology. 2009, 12: 58- 61 [In Russ].

14.   Veselova T.N., Merkulova I.N., Yarovaya E.B., Ruda M. J. Evaluation of myocardial viability Metolit MSCT for the prediction of postinfarction left ventricular remodeling. Regional circulation and microcirculation. 2013, 1 (45): 17-24 [In Russ].

15.   Stukalova O.V., Vlasova, E.E., Tarasov L.V., Ternovoy S.K. Magnetic resonance imaging of the heart in patients with postinfarction cardiosclerosis preoperative surgical myocardial revascularization. Regional circulation and microcirculation. 2013, 1 (45): 36-41[ In Russ].

16.   Hofer M. Computed tomography. A basic guide. Moscow: Medlit. 2006, 208 p [In Russ].

17.   Galanski M., Prokop M. Spiral and multislice CT of the body. New York, Thieme. 2003.

18.   Ropers D., BaumU., Karsten P. et al. Detection of coronary artery stenoses with thin slice multi detector row spiral computed tomography and multiplanar reconstruction. Circulation. 2003; 107: 664-666.

19.   Morozov S.P., Nasnikova I.Y, Sinicyn V.E., Ternovoy S.K. Multidetector computed tomography. (Eds. Thorn SK). M: GEOTAR Media. 2009; 112 p [In Russ].

20.   Boev S.S., Dotsenko N.Y, Gerasimenko L.V., Shekhunova I.A. Coronary artery calcification as a marker of the risk of coronary artery disease and a predictor of cardiovascular events. Health Care in Chuvashia. 2012, 1: 74-79 [In Russ].

21.   Agatston A.S., Janowitz W.R., Hildner F.J. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15: 827-832.

22.   Lau G.T., Ridley L.J., Schieb M.C. et al. Coronary artery stenoses: detection with calcium scoring, CT angiography and both methods combined. Radiology. 2005; 235: 415-422.

23.   General and military radiology: a textbook. (Eds. Trufanova GE). St. Petersburg.: MMA, Medkniga ELBI SPB. 2008, 480 p [In Russ].

24.   Perioperative rehabilitation of patients with complicated forms of ischemic heart disease. (By red.prof. V. Burly.) - Ufa. 2012, 336 p [In Russ].

25.   Sicari R., Nihoyannopoulos P., Evangelista A. et al. Stress Echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. J. Echocardiogr. 2008; 9: 415-37.

26.   Klein C., Nekolla S.G., Bengel F.M. et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002; 105: 162-167.

27.   Wagner A., Mahrholdt H., Holly T.A., Elliott M.D. et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003; 361: 374-379.

28.   Lishmanov J.B., Efimova I.J., Chernov V.I. et al. Scintigraphy as a tool for diagnosis, prognosis and monitoring of the treatment of heart disease. Siberian Journal of Medicine (Tomsk). 2007, 22 (3): 74-77 [In Russ].

29.   Ryzhkova D.V., Kolesnychenko M.G., Boldueva S.A., Kostin J.S. The study of coronary hemodynamics methods of positron emission tomography in patients with cardiac syndrome X. Siberian Medical Journal (Tomsk). 2012, 27 (2): 50-56 [In Russ].

30.   Nekolla S., Reder S., Saraste A. et al. Evaluation of the Novel Myocardial Perfusion Positron-Emission Tomography Tracer 18F-BMS-747158-02: Comparison to 13N-Ammonia and Validation With Microspheres in a Pig Model. Circulation. 2009; 119(17): 2333-2342. 

31.   Gerber B.L., Ordoubadi F.F., Wijns W. et al. Positron emission tomography using 18F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischemic left ventricular dysfunction. Results from the European Community concerted action multicenter study on use of 18F- fluorodeoxyglucose positron emission tomography for the detection of myocardial viability. Eur. Heart. J . 2001: 22: 1691-701.

 

Abstract:

Aim: was to study properties of nanostructured carbon coating stents in coronary arteries with the help of intravascular ultrasonic visualization.

Materials and Methods: experimental implantation of stents in coronary artery was performed on 8 yearling sheep. Estimation of bioinertness properties of stents was made by intravascular ultrasonic method on the 14, 28, 180 day. Bioinertness properties were estimated in comparison with analogical bare-metal stents.

Results: The analysis of results showed that in early stages (up to 28 days) experimental samples of stents cause less formation of trombus than simple balloon-extendable stents. In the period of late outcomes, coronary nanostructured carbon coating stents have lower level of «in-stent stenosis».

Conclusion: stent implantation with nanostructured carbon coating does not prevent the natural reparative processes taking place in the artery wall, does not cause the formation of thrombotic masses under standard doses of antiaggregants. Experimental stents significantly less affected in-stent stenosis, than stents without surface modification, indicating their higher bioinertness. 

 

References

1.     Libby P., Ganz P. Restenosis revisited.- new tsrgets, new therapies. - N. Egl.S.Med. 1997; 37: 418-419.

2.     Aref'eva T.I. et. al. Uvelichenie jekspressii monocitarnyh molekul adgezii i obrazovanija monocitotrombocitarnyh agregatov v krovi pri koronarnom restenoze [Increased expression of monocyte adhesion molecules and the formation of aggregates monotsitotrombotsitarnyh blood in coronary restenosis]. Terapevticheskijarhiv. 2002; 4:46-49 [In Russ].

3.     Morice M.C. A randomized comparison of sirolimus-eluting stent with a standard stent for coronary revesculazation. N. Engl. J. Med. 2002; 346:1773-1780.

4.     Topol E.J. Artery size, neointima and remodeling time for some standards. J. Am. Coll Cardiol. 1998; 32:2087-2094.

5.     Kremneva L.V. Vospalenie kak faktor riska restenoza i serdechno-sosudistyh oslozhnenij posle chreskozhnyh intrakoronarnyh vmeshatel'stv [Inflammation as a risk factor for restenosis and cardiovascular events after percutaneous intracoronary intervention]. Terapevticheskij arhiv. 2006; 3: 89-95 [In Russ].

6.     Lazarenko O.N. Vlijanie pokrytij stentov na tromboobrazovanie i razvitie restenozov [Tekst] [Influence of coatings on the stent thrombosis and restenosis. [Text]. Prakticheskaja angiologija. 2007; 2 (7): 10-13 [In Russ].

7.     Demin V.V. Klinicheskoe rukovodstvo po vnutrisosudistomu ul'trazvukovomu issledovaniju [Clinical guidelines for intravascular ultrasound]. O. IPK JuzhnyjUral. 2005; 400 s. [In Russ].

8.     Fedorchenko AN., Osiev A.G., Kochkina T.A., Protopopov A.V. Prognozirovanie klinicheskih rezul'tatov jendovaskuljarnogo vosstanovlenija prosveta stentirovannyh koronarnyh arterij. Diagnosticheskaja i intervencionnaja radiologija [Prediction of clinical results of endovascular stented recovery lumen of the coronary arteries. Diagnostic and intewentional Radiology. 2007; 3(1): 54-65 [In Russ].

9.     Vlodaver Z., French R., Van tassel R.A. et. al. Corellation of the atamortem coronary arteriogram and the postmortem specimen. Circulation. 1973; 47:162-9.

10.   Grondin C.M., dyrda I., Pasternac A. et al. Discrepancies between cineangiographic and postmortem findings in partients with coronary artery disease and recent myocardial revascularheart diseases: comparison of ciuneangiographic and necropsy findings. Ann. Intern. Med. 1979; 91:350-6.

12.   Isner J.M., Kishel J., Kent K.M. et. al. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic - histologic correlative analisys in 28 patients. Circulation. 1981; 63: 1056-64.

13.   Ivanov V.A., Movsesjanc M.Ju., Trunin I.V. Vnutrisosudistye metody issledovanija v intervencionnoj kardiologii [Intravascular methods of research in interventional cardiology]. Medpraktika. M. 2008; 112S. [In Russ].

14.   Nakamura S., Colombo A., Gaglione A. et al. Intracoronary ultrasound observations during stent implantations. Circulation. 1994; 89; 2026-34.

15.   Colombo A., Hall P., Nakamura S. et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation. 1995; 91: 1676-88.

16.   Goldberg S.L., Colombo A., Nakamura S. et al. Benefit of intracoronary ultrasound in the deployment of Palmaz - Schatz stents. J. Am. Coll. Cardiol. 1994; 24:996-1003. 

 

Abstract:

Aim: was to analyse possibilities of multislice computed tomography in patients with coronary vessels' pathology

Results: we performed the analysis of published data on the use of multislice computed tomography in the coronary heart disease diagnostics. Data on the development of the method are presented: it is indicated that its diagnostic efficiency is related to technological improvements, accompanied by the appearance of each successive generation of multislice computed tomography The possibilities of using scanners from 16- to 230-slice scanners with two sources of energy, advantages of «dual energy» regime of application (dual-energy CT) in the coronary disease diagnostic are considered. Given constraints of the method diagnostic efficacy - artifacts associated with movements and severe calcification.

Conclusions: implementation of the method in cardiology practice can promote its consideration as a promising alternative to invasive diagnostic coronary angiography Further development of the technology can allow multislice computed tomography to become the main method of diagnosis of coronary heart disease and other cardiovascular diseases. 

 

References

1.     Paul J.F., Dambrin G., Caussin C. et al. Sixteen-slice computed tomography after acute myocardial infarction: from perfusion defect to the culprit lesion. Circulation. 2003; 108: 373-374.

2.     Sun Z., Choo G.H., Ng K.H. Coronary CT angiography: current status and continuing challenges. Br. J. Radiol. 2012; 85: 495-510.

3.     Costello P., Lobree S. Subsecond scanning makes CT even faster. Diag. Imaging. 1996; 18: 76-79.

4.     Taguchi K., Aradate H. Algorithm for image reconstruction in multi-slice helical CT. Med. Phys. 1998; 25: 550-561.

5.     Flohr T.G., Schaller S., Stierstorfer K. et al. Multidetector row CT systems and image-reconstruction techniques. Radiology. 2005; 235: 756-773.

6.     Haberl R., Tittus J., Bohme E. et al. Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography Am. Heart J. 2005; 149: 1112-1119.

7.     Goldman L.W. Principles of CT: multislice CT. J. Nucl. Med. Technol. 2008; 36: 57-68.

8.     Lewis M., Keat N., Edyvean S. 16 Slice CT scanner comparison report version 14, 2006. Available from: URL: http://www.impactscan.org/reports/Report06012.htm

9.     Achenbach S., Ropers D., Pohle F.K. et al. Detection of coronary artery stenoses using multi-detector CT with 16 x 0.75 collimation and 375 ms rotation. Eur. Heart J. 2005; 26: 1978-1986.

10.   Kuettner A., Beck T., Drosch T. et al. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart. 2005; 91: 938-941.

11.   Garcia M.J., Lessick J., Hoffmann M.H. Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA. 2006; 296: 403-411.

12.   Steigner M.L., Otero H.J., Cai T. et al. Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int. J. Cardiovasc. Imaging. 2009; 25: 85-90.

13.   Flohr T.G., McCollough C.H., Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 2006; 16: 256-268.

14.   Achenbach S., Marwan M., Schepis T. et al. High- pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 2009; 3: 117-121.

15.   Ruzsics B., Lee H., Zwerner P. et al. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur. J. Radiol. 2008; 18: 2414-2424.

16.   Jiang H.C., Vartuli J., Vess C. Gemstone - the ultimatum scintillator for computed tomography. Gemstone detector white paper.London: GE Healthcare, 2008: 1-8

17.   Mori       S., Endo M., Obata T. et al. Clinical potentials of the prototype 256-detector row CT-scanner. Acad. Radiol. 2005; 12: 148-154.

18.   Hoe J., Toh K.H. First experience with 320-row multidetector CT coronary angiography scanning with prospective electrocardiogram gating to reduce radiation dose. J. Cardiovasc. Comput. Tomogr. 2009; 3: 257-261.

19.   De Graaf F.R., Schuijf J.D., Van Velzen J.E. et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur. Heart J. 2010; 31: 1908-1915.

20.   Sun Z., Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur. J. Radiol. 2006; 60: 279-286.

21.   Pontone G., Andreini D., Bartorelli A. et al. Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J. Am. Coll. Cardiol. 2009; 54: 346-355.

22.   Sun Z., Ng K.H. Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging. 2012; 28: 2109-2119.

23.   Budoff M.J., Dowe D., Jollis J.G. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008; 52: 1724-1732.

24.   Miller J.M., Rochitte C.E., Dewey M. et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl. J. Med. 2008; 359: 2324-2336.

25.   Alkadhi H., Stolzmann P., Desbiolles L. et al. Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart. 2010; 96: 933-938.

26.   Hou Y, Yue Y, Guo W. et al. Prospectively versus retrospectively ECG-gated 256-slice coronary CT angiography: image quality and radiation dose over expanded heart rates. Int. J. Cardiovasc. Imaging. 2012; 28: 153-162.

27.   Hou Y, Ma Y, Fan W. et al. Diagnostic accuracy of low-dose 256-slice multidetector coronary CT angiography using iterative reconstruction in patients with suspected coronary artery disease. Eur. Radiol. 2014; 24: 3-11.

28.   Petcherski O., Gaspar T., Halon D. et al. Diagnostic accuracy of 256-row computed tomographic angiography for detection of obstructive coronary artery disease using invasive quantitative coronary angiography as reference standard. Am. J. Cardiol. 2013; 111: 510-515.

29.   Van Velzen J.E., De Graaf F.R., Kroft L.J. et al. Performance and efficacy of 320-row computed tomography coronary angiography in patients presenting with acute chest pain: results from a clinical registry. Int. J. Cardiovasc. Imaging. 2012; 28: 865-876.

30.   Pelliccia F., Pasceri V., Evangelista A. et al. Diagnostic accuracy of 320-row computed tomography as compared with invasive coronary angiography in unselected, consecutive patients with suspected coronary artery disease. Int. J. Cardiovasc. Imaging. 2013; 29: 443-452.

31.   Gaudio C., Pelliccia F., Evangelista A. et al. 320-row computed tomography coronary angiography vs. conventional coronary angiography in patients with suspected coronary artery disease: a systematic review and metaanalysis. Int. J. Cardiol. 2013; 168: 1562-1564.

32.   Li S., Ni Q., Wu H. et al. Diagnostic accuracy of 320-slice computed tomography angiography for detection of coronary artery stenosis: meta-analysis. Int. J. Cardiol. 2013;168: 2699-2705.

33.   Barrett J.F., Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004; 24: 1679-1691.

34.   Earls J.P. How to use a prospective gated technique for cardiac CT. J. Cardiovasc. Comput. Tomogr. 2009; 3: 45-51.

35.   Leschka S., Stolzmann P., Schmid F.T. et al. Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur. Radiol. 2008; 18: 1809-1817.

36.   Ketelsen D., Thomas C., Werner M. et al. Dualsource computed tomography: estimation of radiation exposure of ECG-gated and ECG-triggered coronary angiography. Eur. J. Radiol. 2010; 73: 274-279.

37.   Dikkers R., Greuter M.J., Kristanto W. et al. Assessment of image quality of 64-row Dual Source versus Single Source CT coronary angiography on heart rate: a phantom study. Eur. J. Radiol. 2009; 70: 61-68.

38.   Hoffmann U., Moselewski F., Nieman K. et al. Non-invasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J. Am. Coll. Cardiol. 2006; 47: 1655-1662.

39.   Sun Z. Cardiac CT imaging in coronary artery disease: Current status and future directions. Quant Imaging Med. Surg. 2012; 2: 98-105.

40.   Halpern E.J., Savage M.P., Fischman D.L., Levin D.C. Cost-effectiveness of coronary CT angiography in evaluation of patients without symptoms who have positive stress test results. AJR Am. J. Roentgenol. 2010; 194: 1257-1262.

41.   Sun Z., Aziz YF., Ng K.H. Coronary CT angiography: how should physicians use it wisely and when do physicians request it appropriately Eur. J. Radiol. 2012; 81: 684-687. 

authors: 

 

Abstract:

Aim: was to assess dynamics of strain (S) and strain rate (SR) of longitudinal, circular and radial fibers in patients with left ventricular (LV) aneurysm (LVA) before and in early stages after coronary artery bypass graft (CABG) using Velocity Vector Imaging.

Material and methods: in 270 segments LV in patients with LVA, S and SR of LV fibers was analyzed before and after CAB. Also analysis of S and SR was performed in patients with CABG and plastic of the LV (group 1, 144 segments) and in the group with CABG without plastic of the LV (group 2, 126 segments).

Results: a function of longitudinal, circular and radial fibers after CABG has improved in all patients. Only SR of radial fibers reached normal. In group 1 was received the positive dynamics from the longitudinal S and SR, and SR circular and radial fibers. In group 2 indicators of function of longitudinal and circular fibers remained without negative dynamics, but positive dynamics is observed only from the SR of the radial fibers. The SR of radial fibers in both groups was normalized.

Conclusion: improvement of LV function in all patients is due to the group I. It is important to study the LV function in patients with LVA depending on the type of surgery.

 

References

1.     Paramonova T.I., Basylev V.V., Vdovkin A.V., Palkova V.A., Karpuchin V.G. Vliyanie operacij rekonstrukcii levogo zheludochka na funkcional'nye i ob"emnye pokazateli u bol'nyh s postinfarktnoj anevrizmoj. [The impact of operations on the reconstruction of the left ventricle function and volume indices in patients with postinfarction aneurism.] Diagnostic radiology and radiotherapy. 2015; 1(6): 74-81 [In Russ].

2.     Dor V., Di Donato M., Civaya F. Postinfarktnoe remodelirovanie levogo zheludochka: magnitno-rezonansnaya tomografiya dlya ocenki patofiziologii posle rekonstrukcii levogo zheludochka. [Post myocardial infarct remodeling: role of magnetic resonance imaging for the assessment of its pathophysiology after left ventricular reconstruction.] Thoracic and Cardiovascular Surgery. 2014; 3: 14-27 [In Russ].

3.     Chernyavskii A.M., Kareva Yu. E., Denisova M.A.,Efendiev V.U. Problema predoperacionnogo modelirovaniya levogo zheludochka. [The problem of preoperative left ventricular modeling.] Cardiology and Cardiovascular Surgery. 2015; 2: 4-7 [In Russ].

4.     Carasso Sh., Biaggi P., Rakowski H. et al. Velocity Vector Imaging: Standart Tissue - Tracking Results Acquired in Normals - The VVI - Strain Study. Journal of the American Society of Echocardiography. 2012; 25(5): 543-552.

5.    Alekhin M.N. Ul'trazvukovye metody ocenki deformacii miokarda i ih klinicheskoe znachenie. [Ultrasound estimation techniques and their clinical significance.] M.: Vidar-M, 2012; 88 p [In Russ].

6.     Rostamzadeh A., Shojaeifard M., Rezaei Y, et al. Diagnostic accuracy of myocardial deformation indices for detecting high risk coronary artery disease in patient without regional wall motion abnormality. Int J Clin Exp Med. 2015; 8(6): 9412-9420.

7.    Pavlyukova E.N., Karpov R.S Deformaciya, rotaciya i povorot po osi levogo zheludochka u bol'nyh ishemicheskoj bolezn'yu serdca s tyazheloj levozheludochkovoj disfunkciej. [Deformation, rotation, and axial torsion of the left ventricle in coronary heart disease patients with its severe dysfunction. ] Terapevticeskij arhiv. 2012;9: 11-16 [In Russ].

8.     Lang R.M., Badano L.P, Mor-Avi V., et al. Recommendation for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. 2015; 16: 233-271.

9.     Helsinki declaration of VMA: Eticheskie principy medicinskih issledovanij s privlecheniem cheloveka, prinyataya 18-j General'noj Assambleej VMA (Hel'sinki, Finlyandiya, iyun’ 1964 п.) [Ethical principles of medical researches with involvement of the person, Accepted by the 18th General Assembly of VMA (Helsinki, Finland, June, 1964). ]http://www. psychiatr.ru/lib/helsinki_declaration.php. (date of the address: 25.05.2015 г.) [In Russ]

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы